

THE MECHANICAL STRENGTH AND FIRE RESISTANCE ANALYSIS OF SEMICONDUCTOR EPOXY MOLD COMPONENT RESIN WASTE REINFORCED RECYCLED HIGH-DENSITY POLYETHYLENE FOR SEMC-RW/R-HDPE COMPOSITE PERMEABLE PAVEMENT

TAN K REEN; PROF. MADYA. Ts. DR. NORAINI BINTI MARSI; HASNIDA HARUN; KAMARULZAKI

MUSTAFA; NIK NORMUNIRA MAT HASSAN; ROSLINDA ALI; JAMALUDDIN JOHAR; HOCK CHEE LOW

INTRODUCTION

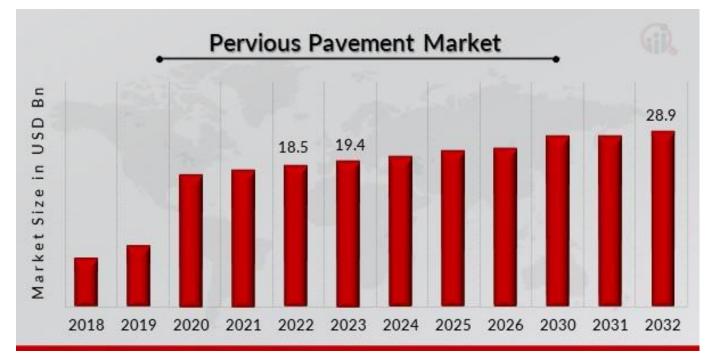
 POLYMER COMPOSITES is a lightweight and improved in mechanical properties such as:

- Tensile strength
- Bending strength
- Stiffness

• **PERMEABLE PAVEMENT** enable infiltration of surface water, especially during heavy rainfall.

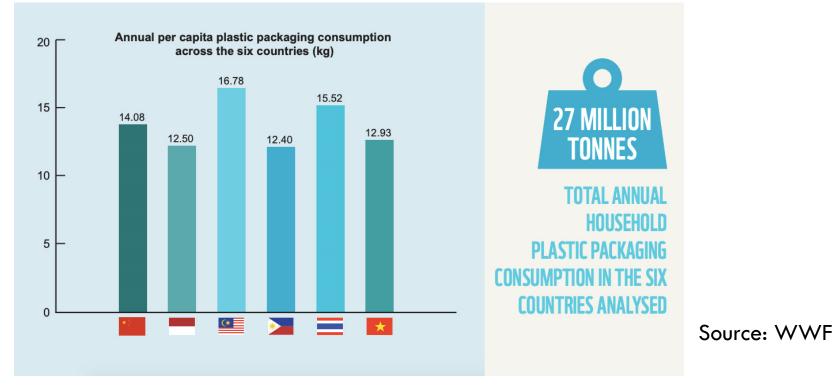
Asphalt

Concrete Grid



UTHM Produces

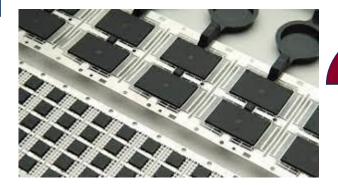
Professionals


Global Pervious Pavement Market Overview

Source: Secondary Research, Primary Research, MRFR Database, and Analyst Review.

• Market demand for pervious pavement was rising worldwide from 2018 and is projected to grow from USD 19.4435 billion in 2023 to USD 28.94650 billion by 2032.

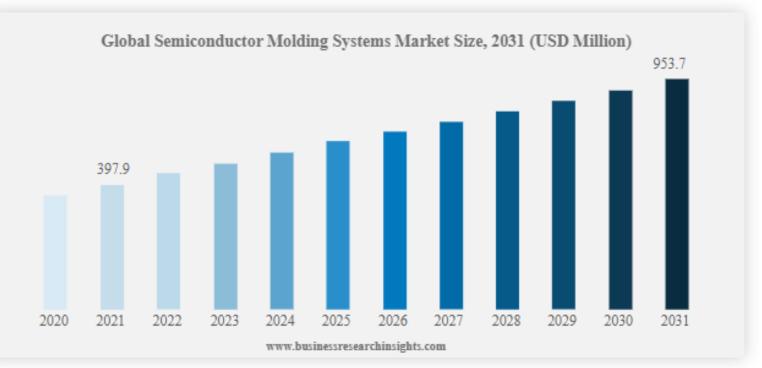
- Malaysia ranks highest amongst 6 Asian countries on plastic consumption.
- Each Malaysian uses an average of 16.8kg of plastic per year.


UTHM Produces

Professionals

Semiconductor Epoxy Mold Compounds

~	
	BGA
	BGA
<	
	BGA



Resin Waste (SEMC-RW)

SIN WASTE (ST MUAR)

- The global semiconductor molding system market size was USD 397.9 million in 2021.
- Market is projected to touch USD 953.7 million by 2031.

f 🔘 🖌 (in)

UTHM Johor

subscribe

Source: Business Research Insights, Dec 2023.

subscribe UTHM TV

f 🞯 🎔 in

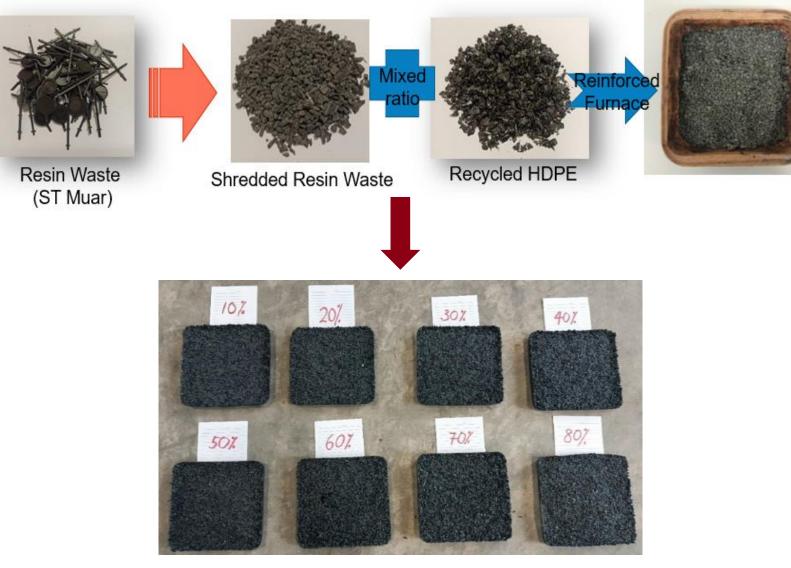
UTHM Johor

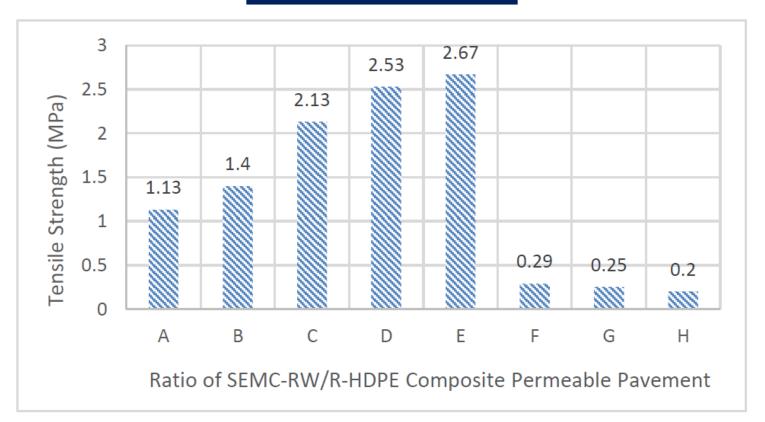
Permeable Pavement of SEMC-RW and R-HDPE.

Author (Year)	Type of materials		Result Findings
Zainab Hashim Abbas Al-salami (2019)	Epoxy and fly ash	•	There was an increase in strength when epoxy replacement reached above 45%. increase in strength due to (15%) gravel replacement by sand of above 40%.
Mariah Awang (2021)	Palm oil bottom ash and polystyrene	•	Achieving an average compressive strength of 4.77 N/mm2 at day 28. Water absorption and density show no significant correlation with the percentages of expanded polystyrene.
N. Aravind (2021)	Aluminium (Al) powder and Fly Ash (FA)	•	Average compressive strength of permeable concrete using admixtures of 15% FA and 1% AI with and without fine aggregate is increased by 13.90% and 1.05% when compared with the corresponding control mixes, respectively. Permeability flow rate of the permeable concrete with and without fine aggregate is in the range of 7.67– 9 ml/s and 14.83–15.83 ml/s, respectively.

METHODOLOGY

• Different composition ratio for sample fabrication

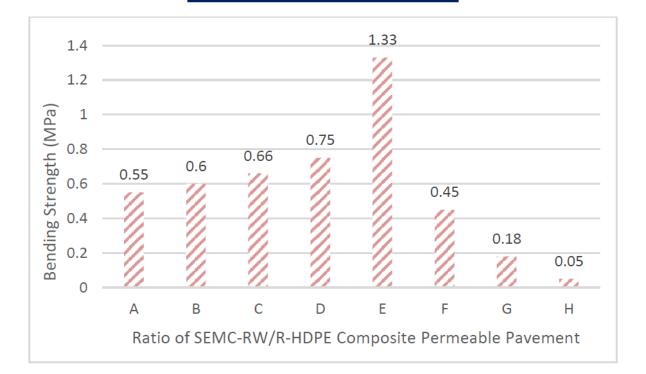

Sample	Ratio of SEMC-RW (wt/wt%)	Ratio of R-HDPE (wt/wt%)	Thickness (mm)
А	10	50	20
В	20	50	20
С	30	50	20
D	40	50	20
Е	50	50	20
F	60	50	20
G	70	50	20
Н	80	50	20



RESULTS & DISCUSSION

Tensile Strength

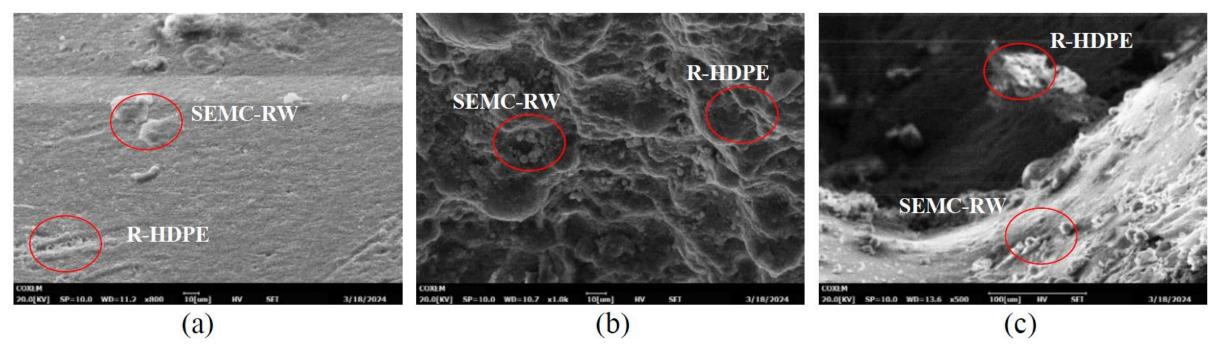
Sample E with composition of 50% of SEMC-RW/R-HDPE composite achieved the highest tensile strength at 2.67 MPa and the lowest tensile strength which is sample H (80%) at 0.20 MPa.



RESULTS & DISCUSSION

Bending Strength

Sample E with composition of 50% of SEMC-RW/R-HDPE composite achieved the highest bending strength at 1.33 MPa and the lowest bending strength which is sample H (80%) at 0.05 MPa.



UTHM Produces

Professionals

RESULTS & DISCUSSION

Scanning Electron Microscopy (SEM) Microstructure Analysis

Sample E indicates for 50%, revealed a commendable matrix-reinforcement bonding, showcasing a cohesive structure at magnifications of 500x, 800x, and 1000x. The distribution of SEMC-RW and R-HDPE was more uniform throughout the composite.

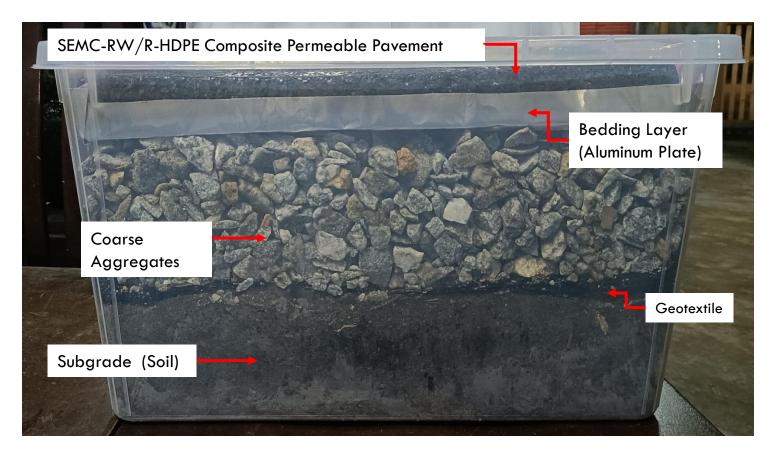
RESULTS & DISCUSSION

Fire Resistance Analysis

Sample	Temperatur	e	Rate of Fire Resistance	Max Temperature
	External	Internal	(%)	(>5min)
А	181.9	48	74	200
В	218.7	51.9	76	215
С	188.7	41.7	77	270
D	184.3	40.2	78	257
Е	256.3	41.7	83	440
F	190.2	44.9	76	260
G	157	43.7	72	273
Η	169.6	50.7	70	250

Sample E with composition of 50% of SEMC-RW/R-HDPE composite achieved the highest rate of fire resistance at 83% where it can withstand external temperature of 256.3 °C.

CONCLUSIONS


 OPTIMUM COMPOSITION for SEMC-RW/R-HDPE composite is sample E with 50 (wt/wt%)

TESTING	RESULTS
Tensile strength	2.67 MPa
Bending strength	1.33 MPa
Fire resistance analysis	83 %

SEMC-RW/R-HDPE Composite Permeable Pavement System

ACKNOWLEDGEMENT

- 1. GPPS Grant Vot. Q572, Industry Grant Vot. M105 and Matching Grant Vot. Q266.
- 2. Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM)
- 3. STMicroelectronics Sdn. Bhd. and Angkasa Kowaris Plastics Sdn. Bhd.

THANK YOU

