Optimizing BaTiO₃ Content in Flexible PVDF Films for Enhanced Piezoelectric Nanogenerator Performance

Habibah Zulkefle^{1.a} *, Muhammad Izz Danial Mohd Muzaini^{1.a}, Norhafizah Burham^{1.a}, Dayana Kamaruzaman^{2.b}, Nor Diyana Md Sin^{3.c}, Nurfadzilah Ahmad^{1.a}, Puteri Sarah Mohamad Saad^{1.a}

^aFaculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Malaysia

^bFaculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Terengganu Branch, Sura Hujung 23000 Dungun, Terengganu, Malaysia

^cFaculty of Electrical Engineering, Universiti Teknologi MARA (UiTM) Johor Branch, Pasir Gudang Campus, 81750 Masai, Johor, Malaysia

* Corresponding author. Tel.: 03-5544 5182; e-mail: habibahzulkefle@uitm.edu.my

Received XXX 2023, Revised XXX 2023, Accepted XXX 2023

ABSTRACT

This study addresses the underutilization potential of harvesting mechanical energy from routine human activities, while also addressing environmental and flexibility concerns associated with conventional lead-based piezoelectric materials. With increasing demand for sustainable and eco-friendly energy solutions, lead-free piezoelectric technologies have emerged as a promising alternative, particularly in the development of flexible nanogenerators. In this study, the flexible PVDF/BaTiO₃ composite films fabricated via drop casting with variation of BaTiO₃ filler loadings (1 wt%, 3 wt%, and 5 wt%) were analyzed for their influence on piezoelectric performance. Characterization techniques included contact angle, FESEM, XRD, FTIR, and piezoelectric output. Results showed that 1 wt% BaTiO₃ yielded the highest output voltage (8.24 V), attributed to optimal β -phase formation. However, loadings beyond 3 wt% led to void formation and particle agglomeration, reducing β -phase crystallinity and overall performance. The findings demonstrate that controlled BaTiO₃ loading enhances energy harvesting efficiency while promoting environmental safety and device flexibility.

Keywords: Lead-free piezoelectric, PVDF, β-phase formation, BaTiO₃, Flexible nanogenerator